一、學情分析
學生在學習直角三角形全等判定定理“HL”之前,已經掌握了一般三角形全等的判定方法,在本章的前一階段的學習過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個定理的證明以及利用這個定理解決相關問題還是一個較高的要求。
二、教學任務分析
本節(jié)課是三角形全等的后一部分內容,也是很重要的一部分內容,凸顯直角三角形的特殊性質。在探索證明直角三角形全等判定定理“HL”的同時,進一步鞏固命題的相關知識也是本節(jié)課的任務之一。因此本節(jié)課的教學目標定位為:
1.知識目標:
①能夠證明直角三角形全等的“HL”的判定定理,進一步理解證明的必要性 ②利用“HL’’定理解決實際問題
2.能力目標:
①進一步掌握推理證明的方法,發(fā)展演繹推理能力
三、教學過程分析
本節(jié)課設計了六個教學環(huán)節(jié):第一環(huán)節(jié):復習提問;第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時小結;第六環(huán)節(jié):課后作業(yè)。
1:復習提問
1.判斷兩個三角形全等的方法有哪幾種?
2.已知一條邊和斜邊,求作一個直角三角形。想一想,怎么畫?同學們相互交流。
3、有兩邊及其中一邊的對角對應相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結論。
我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通
1 / 5
過作等腰三角形底邊的高來證明“等邊對等角”.
要求學生完成,一位學生的過程如下:
已知:在△ABC中, AB=AC.
求證:∠B=∠C.
證明:過A作AD⊥BC,垂足為C,
∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,
∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的對應角相等)
在實際的教學過程中,有學生對上述證明方法產生了質疑。質疑點在于“在證明△ABD≌△ACD時,用了“兩邊及其中一邊的對角對相等的兩個三角形全等”.而我們在前面學習全等的時候知道,兩個三角形,如果有兩邊及其一邊的對角相等,這兩個三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .
也有學生認同上述的證明。
教師順水推舟,詢問能否證明:“在兩個直角三角形中,直角所對的邊即斜邊和一條直角邊對應相等的兩個直角三角形全等.”,從而引入新課。
2:引入新課
(1).“HL”定理.由師生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′
證明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教師用多媒體演示:
定理 斜邊和一條直角邊對應相等的兩個直角三角形全等.
這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.
2 / 5
22A'B'
從而肯定了第一位同學通過作底邊的高證明兩個三角形
全等,從而得到“等邊對等角”的證法是正確的.
練習:判斷下列命題的真假,并說明理由:
(1)兩個銳角對應相等的兩個直角三角形全等;
(2)斜邊及一銳角對應相等的兩個直角三角形全等;
(3)兩條直角邊對應相等的兩個直角三角形全等;
(4)一條直角邊和另一條直角邊上的中線對應相等的兩個直角三角形全等. 對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題
(4),學生感覺是真命題,一時有無法直接利用已知的定理支持,教師引導學生證明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).
求證:Rt△ABC≌Rt△A'B'C'.
證明:在Rt△BDC和Rt△B'D'C'中,
∵BD=B'D',BC=B'C',
∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,
∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',
∴Rt△ABC≌CORt△A'B'C(SAS).
通過上述師生共同活動,學生板書推理過程之后可發(fā)動學生去糾錯,教師后再總結。
3:做一做
問題 你能用三角尺平分一個已知角嗎? 請同學們用手中的三角尺操作完成,并在小組內交流,用自己的語言清楚表達自己的想法.
(設計做一做的目的為了讓學生體會數學結論在實際中的應用,教學中就要求學生能用數學的語言清楚地表達自己的想法,并能按要求將推理證明過程寫出來。)
4:議一議
3 / 5
BEADCDA'D'BB'
學生在學習直角三角形全等判定定理“HL”之前,已經掌握了一般三角形全等的判定方法,在本章的前一階段的學習過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個定理的證明以及利用這個定理解決相關問題還是一個較高的要求。
二、教學任務分析
本節(jié)課是三角形全等的后一部分內容,也是很重要的一部分內容,凸顯直角三角形的特殊性質。在探索證明直角三角形全等判定定理“HL”的同時,進一步鞏固命題的相關知識也是本節(jié)課的任務之一。因此本節(jié)課的教學目標定位為:
1.知識目標:
①能夠證明直角三角形全等的“HL”的判定定理,進一步理解證明的必要性 ②利用“HL’’定理解決實際問題
2.能力目標:
①進一步掌握推理證明的方法,發(fā)展演繹推理能力
三、教學過程分析
本節(jié)課設計了六個教學環(huán)節(jié):第一環(huán)節(jié):復習提問;第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時小結;第六環(huán)節(jié):課后作業(yè)。
1:復習提問
1.判斷兩個三角形全等的方法有哪幾種?
2.已知一條邊和斜邊,求作一個直角三角形。想一想,怎么畫?同學們相互交流。
3、有兩邊及其中一邊的對角對應相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結論。
我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通
1 / 5
過作等腰三角形底邊的高來證明“等邊對等角”.
要求學生完成,一位學生的過程如下:
已知:在△ABC中, AB=AC.
求證:∠B=∠C.
證明:過A作AD⊥BC,垂足為C,
∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,
∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的對應角相等)
在實際的教學過程中,有學生對上述證明方法產生了質疑。質疑點在于“在證明△ABD≌△ACD時,用了“兩邊及其中一邊的對角對相等的兩個三角形全等”.而我們在前面學習全等的時候知道,兩個三角形,如果有兩邊及其一邊的對角相等,這兩個三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .
也有學生認同上述的證明。
教師順水推舟,詢問能否證明:“在兩個直角三角形中,直角所對的邊即斜邊和一條直角邊對應相等的兩個直角三角形全等.”,從而引入新課。
2:引入新課
(1).“HL”定理.由師生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′
證明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教師用多媒體演示:
定理 斜邊和一條直角邊對應相等的兩個直角三角形全等.
這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.
2 / 5
22A'B'
從而肯定了第一位同學通過作底邊的高證明兩個三角形
全等,從而得到“等邊對等角”的證法是正確的.
練習:判斷下列命題的真假,并說明理由:
(1)兩個銳角對應相等的兩個直角三角形全等;
(2)斜邊及一銳角對應相等的兩個直角三角形全等;
(3)兩條直角邊對應相等的兩個直角三角形全等;
(4)一條直角邊和另一條直角邊上的中線對應相等的兩個直角三角形全等. 對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題
(4),學生感覺是真命題,一時有無法直接利用已知的定理支持,教師引導學生證明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).
求證:Rt△ABC≌Rt△A'B'C'.
證明:在Rt△BDC和Rt△B'D'C'中,
∵BD=B'D',BC=B'C',
∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,
∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',
∴Rt△ABC≌CORt△A'B'C(SAS).
通過上述師生共同活動,學生板書推理過程之后可發(fā)動學生去糾錯,教師后再總結。
3:做一做
問題 你能用三角尺平分一個已知角嗎? 請同學們用手中的三角尺操作完成,并在小組內交流,用自己的語言清楚表達自己的想法.
(設計做一做的目的為了讓學生體會數學結論在實際中的應用,教學中就要求學生能用數學的語言清楚地表達自己的想法,并能按要求將推理證明過程寫出來。)
4:議一議
3 / 5
BEADCDA'D'BB'