高二年級數(shù)學(xué)必修三教案(一)
1.預(yù)習(xí)教材,問題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P54~P57,回答下列問題.
(1)在教材P55的“探究”中,怎樣獲得樣本?
提示:將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸。
(2)最常用的簡單隨機抽樣方法有哪些?
提示:抽簽法和隨機數(shù)法.
(3)你認(rèn)為抽簽法有什么優(yōu)點和缺點?
提示:抽簽法的優(yōu)點是簡單易行,當(dāng)總體中個體數(shù)不多時較為方便,缺點是當(dāng)總體中個體數(shù)較多時不宜采用.
(4)用隨機數(shù)法讀數(shù)時可沿哪個方向讀取?
提示:可以沿向左、向右、向上、向下等方向讀數(shù).
2.歸納總結(jié),核心必記
(1)簡單隨機抽樣:一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣.
(2)最常用的簡單隨機抽樣方法有兩種——抽簽法和隨機數(shù)法.
(3)一般地,抽簽法就是把總體中的N個個體分段,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本.
(4)隨機數(shù)法就是利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣.
(5)簡單隨機抽樣有操作簡便易行的優(yōu)點,在總體個數(shù)不多的情況下是行之有效的.
[問題思考]
(1)在簡單隨機抽樣中,某一個個體被抽到的可能性與第幾次被抽到有關(guān)嗎?
提示:在簡單隨機抽樣中,總體中的每個個體在每次抽取時被抽到的可能性相同,與第幾次被抽到無關(guān).
(2)抽簽法與隨機數(shù)法有什么異同點?
提示:
相同點①都屬于簡單隨機抽樣,并且要求被抽取樣本的
總體的個體數(shù)有限;
②都是從總體中逐個不放回地進行抽取
不同點①抽簽法比隨機數(shù)法操作簡單;
②隨機數(shù)法更適用于總體中個體數(shù)較多的時候,而抽簽法適用于總體中個體數(shù)較少的情況,所以當(dāng)總體中的個體數(shù)較多時,應(yīng)當(dāng)選用隨機數(shù)法,可以節(jié)約大量的人力和制作號簽的成本
高二年級數(shù)學(xué)必修三教案(二)
[核心必知]
1.預(yù)習(xí)教材,問題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P2~P5,回答下列問題.
(1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數(shù)學(xué)中算法通常指什么?
提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.
2.歸納總結(jié),核心必記
(1)算法的概念
12世紀(jì)的算法指的是用阿拉伯?dāng)?shù)字進行算術(shù)運算的過程續(xù)表
數(shù)學(xué)中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟
現(xiàn)代算法通?梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題
(2)設(shè)計算法的目的
計算機解決任何問題都要依賴于算法.只有將解決問題的過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準(zhǔn)確地描述出來,計算機才能夠解決問題.
[問題思考]
(1)求解某一個問題的算法是否是的?
提示:不是.
(2)任何問題都可以設(shè)計算法解決嗎?
提示:不一定.