国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高二數(shù)學必修四知識點講解

時間:2018-11-22 15:12:00   來源:無憂考網(wǎng)     [字體: ]
【#高二# #高二數(shù)學必修四知識點講解#】學習是一個堅持不懈的過程,走走停停便難有成就。比如燒開水,在燒到80度是停下來,等水冷了又燒,沒燒開又停,如此周而復始,又費精力又費電,很難喝到水。學習也是一樣,學任何一門功課,都不能只有三分鐘熱度,而要一鼓作氣,天天堅持,久而久之,不論是狀元還是伊人,都會向你招手。為了幫助你更好的學習,©無憂考網(wǎng)高二頻道為你整理了以下文章,歡迎閱讀!
【篇一】

  導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應(yīng)用(極值值問題、曲線切線問題)

  1、導數(shù)的定義:在點處的導數(shù)記作.

  2.導數(shù)的幾何物理意義:曲線在點處切線的斜率

 、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

  3.常見函數(shù)的導數(shù)公式:①;②;③;

 、;⑥;⑦;⑧。

  4.導數(shù)的四則運算法則:

  5.導數(shù)的應(yīng)用:

  (1)利用導數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

  (2)求極值的步驟:

 、偾髮(shù);

 、谇蠓匠痰母;

 、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

  (3)求可導函數(shù)大值與小值的步驟:

  ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,大的為大值,小的是小值。

【篇二】

  單調(diào)性

  ⑴若導數(shù)大于零,則單調(diào)遞增;若導數(shù)小于零,則單調(diào)遞減;導數(shù)等于零為函數(shù)駐點,不一定為極值點。需代入駐點左右兩邊的數(shù)值求導數(shù)正負判斷單調(diào)性。

 、迫粢阎瘮(shù)為遞增函數(shù),則導數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導數(shù)小于等于零。

  根據(jù)微積分基本定理,對于可導的函數(shù),有:

  如果函數(shù)的導函數(shù)在某一區(qū)間內(nèi)恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內(nèi)單調(diào)遞增(或單調(diào)遞減),這種區(qū)間也稱為函數(shù)的單調(diào)區(qū)間。導函數(shù)等于零的點稱為函數(shù)的駐點,在這類點上函數(shù)可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函數(shù)在附近的符號。對于滿足的一點,如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個極大值點,反之則為極小值點。

  x變化時函數(shù)(藍色曲線)的切線變化。函數(shù)的導數(shù)值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

  凹凸性

  可導函數(shù)的凹凸性與其導數(shù)的單調(diào)性有關(guān)。如果函數(shù)的導函數(shù)在某個區(qū)間上單調(diào)遞增,那么這個區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導函數(shù)存在,也可以用它的正負性判斷,如果在某個區(qū)間上恒大于零,則這個區(qū)間上函數(shù)是向下凹的,反之這個區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點稱為曲線的拐點。