国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高三數學上冊綜合能力測試題供參考

時間:2013-10-12 13:51:00   來源:無憂考網     [字體: ]
以下是©無憂考網為大家整理的關于《高三數學上冊綜合能力測試題供參考》的文章,供大家學習參考!

一.填空題
1.設 是否空集合,定義 且 ,已知
B= ,則 等于___________
2.若 是純虛數,則 的值為___________
3.有一種波,其波形為函數 的圖象,若在區(qū)間[0,t]上至少有2個波峰(圖象的高點),則正整數t的小值是___________

4.我市某機構調查小學生課業(yè)負擔的情況,設平均每人每做作業(yè)時間 (單位:分鐘),按時間分下列四種情況統(tǒng)計:0~30分鐘;②30~60分鐘;③60~90分鐘;④90分鐘以上,有1000名小學生參加了此項調查,右圖是此次調查中某一項的流程圖,其輸出的結果是600,則平均每天做作業(yè)時間在0~60分鐘內的學生的頻率是___________


5.已知直線 與圓 相交于, 兩點, 是優(yōu)弧 上任意一點,則 =___________
6. 已知 是等差數列, ,則該數列前10項和 =________
7. 設 的內角, 所對的邊長分別為 ,且 則
的值為_________________
8 .當 時, ,則方程 根的個數是___________
9.設 是 的重心,且 則 的大小為___________
10.設 ,若“ ”是“ ”的充分條件,則實數 的取值范圍是________________
11.設雙曲線 =1的右頂點為 ,右焦點為 ,過點 作平行雙曲線的一條漸近線的直線與雙曲線交于點 ,則 的面積為___________
12.若關于 的不等式組 表示的平面區(qū)域是一個三角形,則 的取值范圍是_______________
13.已知函數 的大小關系為_____________
14.如果一條直線和一個平面垂直,則稱此直線與平面構成一個“正交線面對”,在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成“正交線面對”的概率為________
二.解答題
15. 設函數 。
(1)寫出函數 的小正周期及單調遞減區(qū)間;
(2)當 時,函數 的大值與小值的和為 ,求 的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積。

16. 如圖,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,
G是CC1上的動點。
(Ⅰ)求證:平面ADG⊥平面CDD1C1
(Ⅱ)判斷B1C1與平面ADG的位置關系,并給出證明;


17. 某高級中學共有學生2000人,各年級男、女生人數如下表:
高一 高二 高三
女生 373 x y
男生 377 370 z


已知在全校學生中隨機抽取1名,抽到高二年級女生的概率是0.19.
(Ⅰ)現用分層抽樣的方法在全校抽取48名學生,問應在高三年級抽取多少人?
(Ⅱ)已知 求高三年級女生比男生多的概率.


18. 已知 均在橢圓 上,直線 、 分別過橢圓的左右焦點 、 ,當 時,有 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設 是橢圓 上的任一點, 為圓 的任一條直徑,求 的大值.


19. 過點P(1,0)作曲線 的切線,切點為M1,設M1在x軸上的投影是點P1。又過點P1作曲線C的切線,切點為M2,設M2在x軸上的投影是點P2,…。依此下去,得到一系列點M1,M2…,Mn,…,設它們的橫坐標a1,a2,…,an,…,構成數列為 。
(1)求證數列 是等比數列,并求其通項公式;
(2)求證: ;
(3)當 的前n項和Sn。

20.設函數f(x)=x2-mlnx,h(x)=x2-x+a.
(1) 當a=0時,f(x)≥h(x)在(1,+∞)上恒成立,求實數m的取值范圍;
(2) 當m=2時,若函數k(x)=f(x)-h(x)在[1,3]上恰有兩個不同零點,求實數 a的取值范圍;
(3) 是否存在實數m,使函數f(x)和函數h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由。

參考答案
一.填空題
1. (2, ) 2. 3.5 4. .0.40 5. 6.100 7.4 8. 2個 9. 60°
10. (-2,2)11. 12. 13. 14.
二.解答題
15. 解(1)

故函數 的單調遞減區(qū)間是 。
(2)
當 時,原函數的大值與小值的和

的圖象與x軸正半軸的第一個交點為
所以 的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積

16. .解:(Ⅰ)∵ ABCD-A1B1C1D1是長方體,且AB=AD
∴ 平面
∵ 平面 ∴平面ADG⊥平面CDD1C1
(Ⅱ)當點G與C1重合時,B1C1在平面ADG內,
當點G與C1不重合時,B1C1∥平面ADG
證明:∵ABCD-A1B1C1D1是長方體,
∴B1C1∥AD
若點G與C1重合, 平面ADG即B1C1與AD確定的平面,∴B1C1 平面ADG
若點G與C1不重合
∵ 平面 , 平面 且B1C1∥AD
∴B1C1∥平面ADG
17. 解:(Ⅰ) -
高三年級人數為
現用分層抽樣的方法在全校抽取48名學生,應在高三年級抽取的人數為
(人).
(Ⅱ)設“高三年級女生比男生多”為事件 ,高三年級女生、男生數記為 .
由(Ⅰ)知 且
則基本事件空間包含的基本事件有

共11個,
事件 包含的基本事件有
共5個

答:高三年級女生比男生多的概率為 .
18. 解:(Ⅰ)因為 ,所以有
所以 為直角三角形;
則有
所以,
又 ,
在 中有
即 ,解得
所求橢圓 方程為
(Ⅱ)

從而將求 的大值轉化為求 的大值
是橢圓 上的任一點,設 ,則有 即
又 ,所以
而 ,所以當 時, 取大值
故 的大值為8.
19. 解:(1)對 求導數,得 的切線方程是

當n=1時,切線過點P(1,0),即0
當n>1時,切線過點 ,即0
所以數列
所以數列
(2)應用二項公式定理,得

(3)當

同乘以
兩式相減,得

所以
20. 解:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x 即
記 ,則f(x)≥h(x)在(1,+∞)上恒成立等價于 .
求得
當 時; ;當 時,
故 在x=e處取得極小值,也是小值,
即 ,故 .
(2)函數k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實根。
令g(x)=x-2lnx,則
當 時, ,當 時,
g(x)在[1,2]上是單調遞減函數,在 上是單調遞增函數。

又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)故a的取值范圍是(2-2ln2,3-2ln3)
(3)存在m= ,使得函數f(x)和函數h(x)在公共定義域上具有相同的單調性
,函數f(x)的定義域為(0,+∞)。
若 ,則 ,函數f(x)在(0,+∞)上單調遞增,不合題意;
若 ,由 可得2x2-m>0,解得x> 或x<- (舍去)
故 時,函數的單調遞增區(qū)間為( ,+∞)
單調遞減區(qū)間為(0, )
而h(x)在(0,+∞)上的單調遞減區(qū)間是(0, ),單調遞增區(qū)間是( ,+∞)
故只需 = ,解之得m=
即當m= 時,函數f(x)和函數h(x)在其公共定義域上具有相同的單調性。