【#高一# #高一上冊數(shù)學優(yōu)秀教案5篇#】好的教學計劃是教學成功的一半,作為一名優(yōu)秀的教師,寫好教案很有必要。以下是©無憂考網(wǎng)整理的《高一上冊數(shù)學優(yōu)秀教案5篇》希望能夠幫助到大家。
1.高一上冊數(shù)學優(yōu)秀教案 篇一
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經(jīng)學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設(shè)計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設(shè)計意圖]點評學生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關(guān)系?
[設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x—1)(x+2)=0的所有實數(shù)根”組成的集
[設(shè)計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x—7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設(shè)計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結(jié)這節(jié)課我們主要學習了那些內(nèi)容?有什么學習體會?
[設(shè)計意圖]學習小結(jié)。對本節(jié)課所學知識進行回顧。
2.高一上冊數(shù)學優(yōu)秀教案 篇二
1、教材(教學內(nèi)容)
本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學在其它領(lǐng)域中的重要應(yīng)用。
2、設(shè)計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發(fā)揮學生的主體作用,又體現(xiàn)了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導學生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,后通過例題與練習,將任意角三角函數(shù)的定義,內(nèi)化為學生新的認識結(jié)構(gòu),從而達成教學目標。
3、教學目標
知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學會運用這一定義,解決相關(guān)問題。
過程與方法目標:體會數(shù)學建模思想、類比思想和化歸思想在數(shù)學新概念形成中的重要作用。
情感態(tài)度與價值觀目標:引導學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美。
4、重點難點
重點:任意角三角函數(shù)的定義。
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透。
5、學情分析
學生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念。在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學生形成新的認知結(jié)構(gòu)。
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅(qū)動學生的思維和學習活動,并通過問題,引導學生的質(zhì)疑和討論,充分展示學生的思維過程,后在解決問題的過程中形成新的認知結(jié)構(gòu)。這種教學模式能較好地體現(xiàn)課堂上老師的主導作用,也能充分發(fā)揮課堂上學生的主體作用。
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結(jié)構(gòu),再通過類比學習法引導學生形成“任意角的三角函數(shù)的定義”,后引導學生運用類比學習法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學生形成新的認識結(jié)構(gòu),達成教學目標。
3.高一上冊數(shù)學優(yōu)秀教案 篇三
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質(zhì)。
二、學情
學生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標
激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學思想。
五、教學方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎(chǔ)的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設(shè)計一系列問題串,以引導學生的數(shù)學思維活動。
4.高一上冊數(shù)學優(yōu)秀教案 篇四
一、教學目標
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法
二、教學設(shè)計
對比、歸納、總結(jié)
三、重點和難點
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
四、課時安排
1課時
五、教B具學具準備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復習對比,歸納整理,應(yīng)用提高,以學生活動為主
5.高一上冊數(shù)學優(yōu)秀教案 篇五
一、教材分析
1、教材的地位和作用
(1)本節(jié)課主要對函數(shù)單調(diào)性的學習;
(2)它是在學習函數(shù)概念的基礎(chǔ)上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用
2、教材重、難點
重點:函數(shù)單調(diào)性的定義
難點:函數(shù)單調(diào)性的證明
重難點突破:在學生已有知識的基礎(chǔ)上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)
二、教學目標
知識目標:
(1)函數(shù)單調(diào)性的定義
(2)函數(shù)單調(diào)性的證明
能力目標:培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:培養(yǎng)學生勇于探索的精神和善于合作的意識
(這樣的教學目標設(shè)計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調(diào)動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,有價值的知識是關(guān)于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
(前三部分用時控制在三分鐘以內(nèi),可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導學生發(fā)現(xiàn),教師總結(jié):函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創(chuàng)設(shè)問題,探索新知
緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。
讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。
讓學生自主學習函數(shù)單調(diào)區(qū)間的定義,為接下來例題學習打好基礎(chǔ)。
3、例題講解,學以致用
例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學習了函數(shù)單調(diào)性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。