国产18禁黄网站免费观看,99爱在线精品免费观看,粉嫩metart人体欣赏,99久久99精品久久久久久,6080亚洲人久久精品

高一年級數(shù)學(xué)知識點(diǎn)復(fù)習(xí)

時間:2018-10-22 13:52:00   來源:無憂考網(wǎng)     [字體: ]
【#高一# #高一年級數(shù)學(xué)知識點(diǎn)復(fù)習(xí)#】海不擇細(xì)流,故能成其大:山不拒細(xì)壤,方能就其高。我們現(xiàn)在做的工作,也許過于平淡,也許雞毛蒜皮。但這就是工作,是生活,是成就人事的不可缺少的基礎(chǔ)。對于敬業(yè)者來說,凡事無小事,簡單不等于容易。©無憂考網(wǎng)高一頻道為大家整理了《高一年級數(shù)學(xué)知識點(diǎn)復(fù)習(xí)》感謝大家的閱讀支持,希望可以幫助到大家!

  【一】

  考點(diǎn)要求:

  1.幾何體的展開圖、幾何體的三視圖仍是高考的熱點(diǎn).

  2.三視圖和其他的知識點(diǎn)結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計(jì)算的趨勢.

  3.重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型.

  4.要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖.

  知識結(jié)構(gòu):

  1.多面體的結(jié)構(gòu)特征

  (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.

  (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點(diǎn)的三角形.

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心.

  (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.

  2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.

  (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.

  3.空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法.

  4.空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话?

  (2)畫幾何體的高

  在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變.

  【二】

  集合與元素

  一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

  例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;

  而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

  班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。

  .解集合問題的關(guān)鍵

  解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;

  比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。