【一】
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
新一輪中考復(fù)習(xí)備考周期正式開始,*小編為各位初三考生整理了各學(xué)科的復(fù)習(xí)攻略,主要包括中考必考點、中考?贾R點、各科復(fù)習(xí)方法、考試答題技巧等內(nèi)容,幫助各位考生梳理知識脈絡(luò),理清做題思路,希望各位考生可以在考試中取得優(yōu)異成績!下面是《2018中考數(shù)學(xué)知識點:不等式的判定》,僅供參考!
不等式的判定:
、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
、谠诓坏仁健癮>b”或“a
、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
、茉诹胁坏仁綍r,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
【二】
不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
【三】
變化前的點坐標(biāo)(x,y)
坐標(biāo)變化
變化后的點坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標(biāo)不變,縱坐標(biāo)擴大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標(biāo)同時擴大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標(biāo)同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點的坐標(biāo),往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點所在的象限,醒上相應(yīng)的符號。求坐標(biāo)分兩種情況:(1)求交點,如直線與直線的交點;(2)求距離,再將距離換算成坐標(biāo),通常作x軸或y軸的垂線,再解直角三角形。