一、全等形
1、定義:能夠完全重合的兩個圖形叫做全等圖形,簡稱全等形。
2、一個圖形經(jīng)過翻折、平移和旋轉(zhuǎn)等變換后所得到的圖形一定與原圖形全等。反之,兩個全等的圖形經(jīng)過上述變換后一定能夠互相重合。
二、全等多邊形
1、定義:能夠完全重合的多邊形叫做全等多邊形。互相重合的點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。
2、性質(zhì):
(1)全等多邊形的對應(yīng)邊相等,對應(yīng)角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:≌。如圖,不是為:△ABC≌△ABC。讀作:三角形ABC全等于三角形ABC。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應(yīng)相等的兩三角形全等。(即SAS,邊角邊);
(2)有兩角和它們的夾邊對應(yīng)相等的兩三角形全等。(即ASA,角邊角)
(3)有兩角和其中一角的對邊對應(yīng)相等的兩三角形全等。(即AAS,角角邊)
(4)有三邊對應(yīng)相等的兩三角形全等。(即SSS,邊邊邊)
(5)有斜邊和一條直角邊對應(yīng)相等的兩直角三角形全等。(即HL,斜邊直角邊)
3、全等三角形的性質(zhì):
(1)全等三角形的對應(yīng)邊相等、對應(yīng)角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應(yīng)邊上的中線、高,對應(yīng)角的平分線都相等。
4、全等三角形的作用:
(1)用于直接證明線段相等,角相等。
(2)用于證明直線的平行關(guān)系、垂直關(guān)系等。
(3)用于測量人不能的到達的路程的長短等。
(4)用于間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用于解決有關(guān)等積等問題。
- 2020-2021學(xué)年陜西省西安市長安區(qū)八年級上學(xué)
- 國慶節(jié)初二優(yōu)秀作文600字(20篇)
- 2023-2024學(xué)年山東省濰坊市諸城市八年級上學(xué)
- 2023-2024學(xué)年河南省南陽市宛城區(qū)八年級上學(xué)
- 2023-2024學(xué)年湖北省武漢市青山區(qū)八年級上學(xué)
- 2023-2024學(xué)年吉林省長春市朝陽區(qū)八年級上學(xué)
- 2023-2024學(xué)年山東省濟寧市鄒城市八年級上學(xué)
- 2021-2022學(xué)年湖北省武漢市江漢區(qū)八年級上學(xué)